Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-20, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385450

RESUMO

Human papillomavirus 33, a high-risk HPV strain, is mainly responsible for HPV infection and cervical cancer in Asian countries. The E2 protein of HPV 33 is a DNA-binding protein that plays a crucial role in viral replication and transcription. We have cloned, overexpressed, and purified the DNA binding domain of the E2 protein. Size exclusion chromatography results suggested that the protein exists in a homodimeric state in the native form. Circular dichroism data showed that the protein has a higher content of ß-sheet. The melting temperature obtained from differential scanning calorimetry is 52.59 °C, and the protein is stable at pH 8 and is in a dimeric form at basic pH. The protein is monomeric or unfolded at a very low pH. Chemical denaturation studies suggested that the protein denatured and dissociated simultaneously. The DNA binding activity of the protein was also confirmed and it showed binding affinity in the order of 106 M-1. The protein structure was modeled using homology modeling and other bioinformatic tools. The virtual screening and molecular dynamic simulation studies were performed to find compounds that can act as potent inhibitors against E2 DBD. This study expands the understanding of the conserved structural and binding properties of HPV33 E2 DBD and provides the first report on the characterization of the viral protein.Communicated by Ramaswamy H. Sarma.

2.
Sci Rep ; 14(1): 1687, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242995

RESUMO

Alzheimer's disease (AD) is a multifaceted neurodegenerative condition. The pathogenesis of AD is highly intricate and the disease is apparent in the aged population ~ 50-70 years old. Even after > 100 years of research, the root origin of AD and its pathogenesis is unclear, complex and multifaceted. Herein, we have designed and synthesized 9 novel molecules with three different heterocyclic scaffolds namely pyrrolidone-2-one, quinoline & indoline-2-one to imitate and explore the novel chemical space around donepezil. The synthesized molecules were evaluated for their potential as anti-Alzheimer's agents through in-vitro and in-vivo studies in appropriate animal models. To further understand their interaction with acetylcholinesterase enzyme (AChE), extra-precision docking, and molecular dynamics simulation studies were carried out. As the number of compounds was limited to thoroughly explore the structure-activity relationship, atom-based 3D-quantitative structure-activity relationships (QSAR) studies were carried out to get more insights. All the designed compounds were found to inhibit AChE with IC50 in the micromolar range. From pyrrolidone-2-one series, 6-chloro-N-(1-(1-(3,4-dimethoxybenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)pyridine-3-sulfonamide (9), 2-(1-benzylpiperidin-4-yl)-6,7-dimethoxy-4-(4-methoxyphenyl)quinoline (18) from quinoline series and N-(1-benzylpiperidin-4-yl)-2-(2-oxoindolin-3-yl)acetamide (23) from indolin-2-one series inhibited AChE with an IC50 value of 0.01 µM. Based on other biochemical studies like lipid peroxidation, reduced glutathione, superoxide dismutase, catalase, nitrite, and behavioural studies (Morris water maze), compound 9 was found to be a potent AChE inhibitor which can be further explored as a lead molecule to design more potent and effective anti-Alzheimer's agents.


Assuntos
Doença de Alzheimer , Piridinas , Quinolinas , Sulfonamidas , Animais , Donepezila/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , Relação Quantitativa Estrutura-Atividade , Pirrolidinonas , Simulação de Acoplamento Molecular
3.
Biochim Biophys Acta Gen Subj ; 1867(12): 130482, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821013

RESUMO

BACKGROUND: The interaction of small molecules with G quadruplexes is in focus due to its role in molecular recognition and therapeutic drug design. Stabilization of G-quadruplex structures in the promoter regions of oncogenes by small molecule binding has been demonstrated as a potential approach for cancer therapy. METHODS: In this study, electronic spectroscopy (ultraviolet-visible, fluorescence, circular dichroism), differential scanning calorimetry, and molecular modeling were employed to explore the interactions between the chemotherapy drug doxorubicin and a chlorin compound 5,10,15,20-tetraphenyl-[2,3]-[bis(carboxy)-methano]chlorin (H2TPC(DAC)), and the c-Myc 22-mer G quadruplex DNA. RESULTS: Spectroscopic studies indicated external binding of the compounds with partial stacking at the end quartets. Calorimetric studies and temperature dependent circular dichroism data displayed increased melting temperatures of G quadruplex structure on binding with the compounds. Circular dichroism spectra indicated that the G quadruplex structure is intact upon ligand binding. Both the compounds showed binding affinities of the order of 106 M-1. Fluorescence lifetime studies revealed static quenching as major mechanism for fluorescence quenching. Polymerase chain reaction stop assay hinted that binding of both ligands under study could inhibit the amplification of the DNA sequence. CONCLUSION: Results show that doxorubicin and H2TPC(DAC) bind to the 22-mer c-Myc quadruplex structure with good affinity and induce stability. SIGNIFICANCE: Doxorubicin and H2TPC(DAC) have demonstrated their affinity towards c-Myc G quadruplex DNA, stabilizing it and inhibiting expression and polymerization. The results can be of practical use in designing new analogs for the two compounds, which can become potent anti-cancer agents targeting the c-Myc GQ structure.


Assuntos
Antineoplásicos , Quadruplex G , Doxorrubicina/farmacologia , Dicroísmo Circular , Antineoplásicos/química , DNA/química
4.
J Biomol Struct Dyn ; 41(3): 805-820, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34895067

RESUMO

1,8-Naphthyridine scaffold is a nitrogen-containing heterocyclic compound known for its versatile biological activities. The structure-activity relationship (SAR) has shown that modification at the 3rd position of the nucleus with various secondary amines enhances the binding efficiency and potency towards the Adenosine receptor (A2A type). In this paper, we have reported some newly synthesized derivatives of 1,8- Naphthyridine, and the prepared compounds were assessed for their potential to constrain A2A receptors through molecular docking. Based on the SAR studies, modifications were done at the 3rd position of the nucleus by incorporating secondary amines. The synthesized compounds were characterized by FT-IR, 1H and 13C NMR. All the synthesized compounds 10a-f and 13a-e showed good binding efficiency towards the A2A receptors and might act as an A2A receptor antagonist, as predicted by in-silico studies. 1-Ethyl-7-methyl-3-(pyrrolidine-1-carbonyl)-1,8-naphthyridine-4(1H)-one (10c) in first series showed the highest docking score of -8.407 and binding energy (MMGBSA dG bind) of -56.60 kcal/mol and N-(4-2-diethylaminoethoxyphenyl)-1-ethyl-7-methyl-4-oxo-1, 4, 4a, 8a- tetrahydro-1,8-naphthyridine-3-carboxamide (13b) showed the highest docking score of -8.562 and free binding energy (MMGBSA dG bind) score of -64.13 kcal/mol which was comparable to the bound ligand. MD simulations study also suggested that compounds 10c and 13b would form stable complex human A2A receptor. These findings need to be validated by further in vitro assays.Communicated by Ramaswamy H. Sarma.


Assuntos
Naftiridinas , Humanos , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Ligantes , Naftiridinas/farmacologia , Naftiridinas/química
5.
J Biomol Struct Dyn ; 41(13): 6282-6294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35921217

RESUMO

Inhibition of acetylcholinesterase (AChE) has been widely explored to develop novel molecules for management of Alzheimer's disease. In past research finding reported molecule 3-(4-(4-fluorobenzoyl)piperidin-1-yl)-1-(4-methoxybenzyl)pyrrolidin-2-one displayed a spectrum of anti-Alzheimer's properties herein, we report a library of 18 novel molecules that were rationally designed and synthesized employing known literature to mimic and explore the novel chemical space around the lead compound 6e and donepezil. All the compounds were docked in extra-precision mode with AChE (PDB ID 4EY7) using the Glide module. Molecular dynamics (MD) simulation studies were carried out for 100 ns along with MM-PBSA studies of the trajectory frames generated post-MD simulations. Docking and MD simulation studies suggested that the synthesized compounds showed a good binding affinity with AChE. and might form stable complexes. 3-(4-(benzyl(methyl)amino)piperidin-1-yl)-1-(3,4-dimethoxybenzyl)pyrrolidin-2-one (14a; docking score: -18.59) and 1-(3,4-dimethoxybenzyl)-3-(4-(methyl(thiazol-2-ylmethyl)amino)piperidin-1-yl)pyrrolidin-2-one (14d; docking score: -18.057) showed higher docking score than donepezil (docking score: -17.257) while most of the compounds had docking score >-10.0. ADMET study predicted these compounds to be CNS active and most of the compounds were drug-like molecules with no HERG blockade and good to excellent oral absorption. We developed an atom-based 3 D-QSAR model with R^2 and Q^2 values of 0.9639 and 0.8779 to predict the activity of the synthesized compounds. The model predicted these compounds to be potent AChE inhibitors with IC50 values in the lower micromolar range. Based on the in silico findings, we report these newly synthesized compounds 3-(4-(benzyl(methyl)amino)piperidin-1-yl)-1-(3,4-dimethoxybenzyl)pyrrolidin-2-one (14a) and 7-(2,6-difluorobenzyl)-2-(4-methoxybenzyl)-2,7-diazaspiro[4.5]decan-1-one (20 b) as potential AChE inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Donepezila/química , Simulação de Dinâmica Molecular , Acetilcolinesterase/química , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico
6.
Fundam Clin Pharmacol ; 36(4): 586-600, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35001431

RESUMO

Andrographis paniculata is an annual medicinal herb from the family Acanthaceae. Andrographolide is generally considered an essential bioactive component of plant A. paniculata. Since ancient times, it has been widely recognized for its therapeutic qualities and has attracted the scientific and medical communities' attention. This review summarizes the molecular, clinical, and in vitro research of compound andrographolide and its mechanism of action. Andrographolide, when combined with other enhancing agents, offers a wide variety of health benefits. The therapeutic potential of andrographolide has been exemplified and exhibited by directly regulating genes and indirectly interacting with small molecules and different enzymes. This review compiles and consolidates the pharmacological action of andrographolide and its analogs and deciphers the gaps that have hindered its use in medicinal research.


Assuntos
Andrographis , Diterpenos , Plantas Medicinais , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Extratos Vegetais/farmacologia
7.
Mini Rev Med Chem ; 21(20): 3191-3202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33632095

RESUMO

Corona Virus Disease-2019 (COVID-19), caused by the SARS CoV-2 virus, has been announced as a pandemic by the World Health Organization. COVID-19 has affected people globally, infecting more than 39.8 million people and claiming up to 1.11 million lives, yet there is no effective treatment strategy to cure this disease. As vaccine development is a time-consuming process, currently, efforts are being made to develop alternative plans for the timely and effective management of this disease. Drug repurposing always fascinated researchers and can be utilized as the most acceptable alternative to develop the therapeutics for COVID-19 using the pre-approved drugs. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has shown resemblance with distinctive enzyme targets, such as 3CLpro/Mpro, RdRp, Cathepsin L, and TMPRSS2 present in SARS CoV and MERS CoV. Therefore, the drugs that have shown efficacy in these viruses can also be used for the treatment of COVID-19. This review focuses on why repurposing could provide a better alternative in COVID- 19 treatment. The similarity in the structure and progression of infection of SARS CoV and MERS viruses offers a direction and validation to evaluate the drugs approved for SARS and MERS against COVID-19. It has been indicated that multiple therapeutic options that demonstrate efficacy against SARS CoV 2 are available to mitigate the potential emergence of COVID-19 infection.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119488, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545510

RESUMO

We report the interaction of resveratrol with an octamer DNA sequence d(CCAATTGG)2, present in the promoter region of many oncogenes, using a combination of absorption, fluorescence, calorimetric and nuclear magnetic resonance techniques to probe the binding. Resveratrol binds to the duplex sequence with a binding constant 2.20 × 106 M-1 in absorption studies. A ligand-duplex stoichiometry of 2.2:1 was obtained with binding constant varying from 103 to 104 M-1 in fluorescence titration measurements. Spectral changes indicated external binding of resveratrol to duplex DNA. Circular dichroism data displayed minimal variation suggesting external binding. Melting temperatures of DNA and its 1:1 complex showed a difference of approximately 2.25 °C, supporting the external binding. Nuclear magnetic resonance data showed resveratrol binds to the minor groove region near the AT base pair from the nuclear Overhauser effect spectroscopic cross peaks. Distance restrained molecular dynamics was employed in explicit solvent condition to obtain the lowest energy structure. The complex was stable and retained the B DNA conformation. Findings in this study identify resveratrol as a minor groove binder to the AT region of DNA and pave the way for exploring resveratrol and its analogues as promising anticancer/antibacterial drug.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Sequência de Bases , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Resveratrol , Análise de Sequência de DNA
9.
RSC Adv ; 11(47): 29354-29371, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479565

RESUMO

We investigated the interaction of three flavone compounds, baicalein, chrysin and flavone with calf thymus DNA and octamer DNA sequence (CCAATTGG)2. The binding mechanisms of the flavone compounds with both DNA were unveiled using biophysical, thermodynamic and molecular modelling techniques. Absorption and fluorescence titrations confirm the formation of the DNA complexes along with the extent of interaction. Absorption data proposed an intercalation mode of binding. Fluorescence displacement assays using ethidium bromide and Hoechst 33258 data supports a partial intercalation. Potassium iodide quenching substantiated this finding. Circular dichroism data revealed major structural changes on binding with flavones which can arise from intercalation partially or in a tilted arrangement. Analysis of the effect of ionic strength on complex formation eliminated the role of electrostatic interaction in the binding. Differential scanning calorimetric data showed substantial changes in the melting temperatures of complexes and predicted the DNA-baicalein complex as the most stable one. Molecular modelling showcased that the complexes are located near the AT rich region. Docking analysis with different sequences showed that the flavone compounds intercalated with base pairs only with d(CGATCG)2.

10.
J Biomol Struct Dyn ; 38(10): 3087-3097, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31476951

RESUMO

Structure-based drug designing has become a significant subject of research, and several clinically promising DNA binding compounds were evolved using this technique. The interaction of an octamer DNA sequence d(CCAATTGG)2 with a natural stilbene, resveratrol and its analogues have been studied using molecular docking method. Out of the ten compounds studied, seven compounds were found to bind to the minor groove of AATT segment of the sequence. Pterostilbene, a natural analogue of resveratrol, showed the lowest binding energy. Rhaponticin, a natural analogue of resveratrol and digalloylresveratrol, a synthetic ester of resveratrol bind to the major groove of the AATT segment while dihydroresveratrol binds to the minor groove of GC terminal base pair. ADMET (Absorption, distribution, metabolism, excretion and toxicity) study showed that all compounds obey Lipinski rule and are accepted as orally active drugs based on different physicochemical descriptors. Molecular dynamics simulations were performed for the complex with lowest binding energy and trajectory analysis were performed. Principal component analysis has been performed to underline the prominent motions in alone DNA and when it is bound to pterostilbene. AbbreviationsADMETAbsorption, distribution, metabolism, excretion and toxicityDIGDigalloyl resveratrolDNADeoxyribonucleic acidELElectrostatic energyENPOLARNonpolar solvation energyESURFSurface areaGBGeneralized BornHBAHydrogen bond acceptorsHBDHydrogen bond donorsLGALamarckian genetic algorithmMDMolecular dynamicsPBPoisson-BoltzmannPCAPrincipal component analysisPTPterostilbeneRMSDRoot mean square deviationSASimulated annealingTLX3T-cell leukemia homeobox 3VDWvan der WaalsCommunicated by Ramaswamy H. Sarma.


Assuntos
DNA , Simulação de Dinâmica Molecular , Sítios de Ligação , Simulação de Acoplamento Molecular , Análise de Componente Principal , Resveratrol
11.
J Photochem Photobiol B ; 170: 217-224, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28445857

RESUMO

Interactions of a natural stilbene compound, resveratrol with two DNA sequences containing AATT/TTAA segments have been studied. Resveratrol is found to interact with both the sequences. The mode of interaction has been studied using absorption, steady state fluorescence and circular dichroism spectroscopic techniques. UV-visible absorption and fluorescence studies provided the information regarding the binding constants and the stoichiometry of binding, whereas circular dichroism studies depicted the structural changes in DNA upon resveratrol binding. Our results evidenced that, though resveratrol showed similar affinity to both the sequences, the mode of interactions was different. The binding constants of resveratrol to AATT/TTAA sequences were found to be 7.55×105M-1 and 5.42×105M-1 respectively. Spectroscopic data evidenced for a groove binding interaction. Melting studies showed that the binding of resveratrol induces differential stability to the DNA sequences d(CGTTAACG)2 and d(CGAATTCG)2. Fluorescence data showed a stoichiometry of 1:1 for d(CGAATTCG)2-resveratrol complex and 1:4 for d(CGTTAACG)2-resveratrol complex. Molecular docking studies demonstrated that resveratrol binds to the minor groove region of both the sequences to form stable complexes with varied atomic contacts to the DNA bases or backbone. Both the complexes are stabilized by hydrogen bond formation. Our results evidenced that modulation of DNA sequence within the same bases can greatly alter the binding geometry and stability of the complex upon binding to small molecule inhibitor compounds like resveratrol.


Assuntos
DNA/metabolismo , Estilbenos/metabolismo , Sequência de Bases , Sítios de Ligação , Dicroísmo Circular , DNA/química , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Resveratrol , Espectrometria de Fluorescência , Estilbenos/química
12.
Int J Nanomedicine ; 10: 3603-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26028971

RESUMO

Standard in vitro drug testing employs 2-D tissue culture plate systems to test anti-leukemic drugs against cell adhesion-mediated drug-resistant leukemic cells that harbor in 3-D bone marrow microenvironments. This drawback necessitates the fabrication of 3-D scaffolds that have cell adhesion-mediated drug-resistant properties similar to in vivo niches. We therefore aimed at exploiting the known property of polyurethane (PU)/poly-L-lactic acid (PLLA) in forming a micro-nanofibrous structure to fabricate unique, not presented before, as far as we are aware, 3-D micro-nanofibrous scaffold composites using a thermally induced phase separation technique. Among the different combinations of PU/PLLA composites generated, the unique PU/PLLA 60:40 composite displayed micro-nanofibrous morphology similar to decellularized bone marrow with increased protein and fibronectin adsorption. Culturing of acute myeloid leukemia (AML) KG1a cells in FN-coated PU/PLLA 60:40 shows increased cell adhesion and cell adhesion-mediated drug resistance to the drugs cytarabine and daunorubicin without changing the original CD34(+)/CD38(-)/CD33(-) phenotype for 168 hours compared to fibronectin tissue culture plate systems. Molecularly, as seen in vivo, increased chemoresistance is associated with the upregulation of anti-apoptotic Bcl2 and the cell cycle regulatory protein p27(Kip1) leading to cell growth arrest. Abrogation of Bcl2 activity by the Bcl2-specific inhibitor ABT 737 led to cell death in the presence of both cytarabine and daunorubicin, demonstrating that the cell adhesion-mediated drug resistance induced by Bcl2 and p27(Kip1) in the scaffold was similar to that seen in vivo. These results thus show the utility of a platform technology, wherein drug testing can be performed before administering to patients without the necessity for stromal cells.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ácido Láctico/química , Leucemia Mieloide Aguda/tratamento farmacológico , Nanocompostos/química , Polímeros/química , Poliuretanos/química , Tecidos Suporte/química , Compostos de Bifenilo/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citarabina/farmacologia , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Fibronectinas/química , Humanos , Leucemia Mieloide Aguda/patologia , Nanofibras/química , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Poliésteres , Sulfonamidas/farmacologia
13.
J Photochem Photobiol B ; 149: 58-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26048525

RESUMO

The interaction of human serum albumin (HSA) with two stilbene compounds, resveratrol and pterostilbene was investigated using fluorescence, UV-visible absorption, Fourier transform infrared spectroscopic methods and molecular modeling technique. The intrinsic fluorescence of HSA was quenched significantly by resveratrol and pterostilbene. Analysis of fluorescence quenching data of HSA by the two compounds using Stern-Volmer and modified Stern-Volmer methods showed the formation of ground state complexes of HSA with resveratrol and pterostilbene. The binding analysis showed that the binding constant for resveratrol as 4.47×10(6) and 0.299×10(2)M(-1)s(-1) for pterostilbene revealing the high binding affinity of resveratrol to HSA. The conformational changes of HSA were investigated using synchronous fluorescence and Fourier transform infrared spectroscopy. The efficiency of energy transfer and the distance between HSA and resveratrol/pterostilbene were calculated. The binding of resveratrol/pterostilbene was modeled by molecular docking, which is in accordance with the experimental data.


Assuntos
Albumina Sérica/metabolismo , Estilbenos/metabolismo , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Resveratrol , Albumina Sérica/química , Análise Espectral
14.
J Biomol Struct Dyn ; 32(7): 1164-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23808712

RESUMO

Mitoxantrone is a promising antitumor drug having considerably reduced cardiotoxicity as compared to anthracyclines. Its binding to deoxyhexanucleotides sequence d-(ATCGAT)2 has been studied by proton and phosphorous-31 nuclear magnetic resonance spectroscopy. The stoichiometry reveals that 1:1 and 2:1 mitoxantrone-d(ATCGAT)2 complexes are formed in solution. Significant upfield shifts in 6H/7H, 2H/3H, 11NH, and 12NH protons (∼.5 ppm) of mitoxantrone and T6NH imino protons (∼.3 ppm) are observed. The phosphorous resonances do not shift significantly indicating that the base pairs do not open at any nucleotide step along the sequence of hexamer. Several inter-molecular Nuclear Overhauser Enhancement connectivities between mitoxantrone and hexanucleotide protons indicate that mitoxantrone chromophore stacks with terminal A1-T6 base pair and side chains involving 12CH2, 12NH, and 14OH protons are in close proximity of A1, T2, A5, and T6 bases. Absorption and emission spectra show red shift in wavelength maxima, which is characteristic of stacking interaction. At higher mitoxantrone to nucleic acid ratios, electrostatic interactions are dominant. The 2:1 drug/DNA stoichiometric structure obtained by restrained Molecular Dynamics simulations shows considerable distortions in backbone torsional angles and helicoidal parameters although structural fluctuations in 25 ps analysis of trajectory are found to be negligible. Mitoxantrone binds as a monomer at either or both ends of hexamer externally with side chains interacting specifically with DNA. The findings are relevant to the understanding of pharmacological action of drug.


Assuntos
Antineoplásicos/química , DNA/química , Mitoxantrona/química , Sequência de Bases , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular
15.
Med Chem ; 7(4): 301-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21574948

RESUMO

Trans activation response (TAR) region is an RNA target of considerable importance in controlling the replication cycle of the human immunodeficiency virus (HIV). At a transcriptional level, HIV-1 is regulated by means of the interaction between Tat protein and TAR RNA. The TAR-Tat complex is an attractive target for developing novel antiviral drugs. Herein, the recognition modes of 8 structurally different ligands, as mimics of Tat protein, in complex with a TAR RNA are investigated using the DOCK 6.4 flexible docking protocol in association with the newly-implemented scoring function AMBER including solvation implicitly through the generalized Born solvent-accessible surface area (GB/SA) continuum model. The TAR RNA-ligand interactions are further characterized and contrasted using the nature of separate contributions to the stability of the complexes. Several interesting implications for the key challenge, the development of low molecular weight ligands binding to HIV-1 TAR RNA with high affinity and specificity, are discussed.


Assuntos
Simulação por Computador , Desenho de Fármacos , Repetição Terminal Longa de HIV , HIV-1/química , RNA Viral/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , HIV-1/genética , HIV-1/fisiologia , Humanos , Ligantes , Conformação Molecular , Terapia de Alvo Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA Viral/genética , RNA Viral/metabolismo , Relação Estrutura-Atividade , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
16.
J Biomed Opt ; 10(5): 054012, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16292972

RESUMO

Fluorescence intensity fluctuations in the visible wavelength regime in normal, benign, and cancerous human breast tissue samples are studied through wavelet transform. The analyses have been carried out in unpolarized, parallel and perpendicularly polarized channels, for optimal tissue characterization. It has been observed that polarized fluorescence data, particularly the perpendicular components, differentiate various tissue types quite well. Wavelet transform, because of its ability for multiresolution analysis, provides the ideal tool to separate and characterize fluctuations in the fluorescence spectra at different scales. We quantify these differences and find that the fluctuations in the perpendicular channel of the cancerous tissues are more randomized as compared to their normal counterparts. Furthermore, for cancerous tissues, the same is very well described by the normal distribution, which is not the case for normal and benign samples. It has also been observed that, up to a certain point, fluctuations at larger scales are more sensitive to tissue types. The differences in the average, low-pass wavelet coefficients of normal, cancerous, pericanalicular, and intracanalicular benign tissues are also pointed out.


Assuntos
Algoritmos , Inteligência Artificial , Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Neoplasias da Mama/diagnóstico , Diagnóstico por Computador/métodos , Espectrometria de Fluorescência/métodos , Adolescente , Adulto , Idoso , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
17.
Appl Opt ; 41(19): 4024-35, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12099614

RESUMO

We report the measurement of optical transport parameters of pathologically characterized malignant tissues, normal tissues, and different types of benign tumors of the human breast in the visible wavelength region. A spatially resolved steady-state diffuse fluorescence reflectance technique was used to estimate the values for the reduced-scattering coefficient (mu(s)') and the absorption coefficient (mu(a)) of human breast tissues at three wavelengths (530, 550, and 590 nm). Different breast tissues could be well differentiated from one another, and different benign tumors could also be distinguished by their measured transport parameters. A diffusion theory model was developed to describe fluorescence light energy distribution, especially its spatial variation in a turbid and multiply scattering medium such as human tissue. The validity of the model was checked with a Monte Carlo simulation and also with different tissue phantoms prepared with polystyrene microspheres as scatterers, riboflavin as fluorophores, and methylene blue as absorbers.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Modelos Teóricos , Óptica e Fotônica , Espectrometria de Fluorescência , Simulação por Computador , Difusão , Feminino , Humanos , Método de Monte Carlo , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...